The \$2 Trillion Transition

Canada's road to Net Zero

Presentation to TABE December 2021

- Power remains concentrated, but divisions deepen
- Deadlock on coal
- O The outlook remains cloudy for meeting warming goals
- Adaptation is ready for primetime
- There's a growing role for the private sector

Canada has been slower to decouple growth and emissions

GHG emissions including LULUCF, per unit of PPP GDP

Source: OECD

But international comparisons, and percentage-based targets lack context

Coal use, share of total CO2 emissions

Source: Our World in Data, RBC Economics

- Growth in the fossil fuel sector, Canada's penchant for large autos, and our cold climate have worked to offset many of the energy efficiency efforts made elsewhere.
- The big emissions win in the last two decades has been largely in phasing out coal electricity.

RBC Economics The cost of inaction

- Doing nothing to cut emissions could cost us some \$40 billion annually in future disasters made worse by climate change.
 - That's heat waves, floods, and so on
 - Tipping points could as much as double those costs
- Moving to quickly shut-in oil and gas production has consequences too:
 - If oil and gas output falls by two-thirds, the industry would shrink from nearly 8% of GDP to just 1%, we'd lose nearly three-quarters of the jobs in the sector, and government revenue would fall by \$8 billion each year.
 - Cutting emissions with falling production could cost \$550/T

At the current pace, we have less than a decade to start deeply cutting emissions

Remaining carbon budget for a 66% chance of less than 1.5C warming

Source: Carbon Brief

RBC Economics What we set out to do

- Amid commitments and targets, subsidies and carbon taxes, one thing remained unclear to us: how we'd actually get from today's emissions to Net Zero.
- Many projections and analyses we've seen suggested future technologies were just around the corner, and just about to be affordable.
- We set out to answer a simpler question: with current technology, where could we get, and at what cost?
- In other words, this was a static assessment: we didn't project growth by sector, population, or technologies.
- If we had to get the current economy as close to Net Zero as presently feasible, what would it take?

Our Findings

Economics The Net Zero Equation

RBC

RBC Economics How do we cut emissions?

- In our current energy system, we mostly take the chemical energy in fossil fuels, and burn it to create other forms of energy:
 - We burn it to generate heat for our homes; create steam, spin a turbine, and generate electricity; to melt ore and create metals; and to run a combustion engine and create kinetic energy to move vehicles
- Since the emissions come from the act of burning fuel, we can cut emissions in three ways :
 - Reduce the amount of energy it takes to do something
 - Reduce the lifecycle emissions from the fuel used (e.g., biofuel)
 - Substitute away from fuel altogether
- We'll do a combination of those three, and where we can't get away from fuels, we'll need to capture or offset the emissions

Net Zero is already feasible in some sectors

Emissions by sector, millions of metric tonnes of CO2 equivalent

Source: Environment and Climate Change Canada, Natural Resources Canada, RBC Economics | * Labels indicate annual abatement cost (\$Bn)

Where can we already cut emissions to zero?

Electricity

 The challenge here is not technical feasibility: renewables work, but they struggle to reliably generate electricity and storage is pricey. That may yet change.

Buildings

 Heat pumps and better insulation can mostly obviate natural gas or oil heat, but disruptive retrofits are a key challenge.

Where are deep cuts possible, but harder?

Transportation

 We have tools for passenger transport, but for heavy freight, marine, and air transport, batteries are currently too heavy and expensive.

Oil & Gas

 Oil & gas is home to some of the cheapest cuts (methane) and some of the most expensive (CCUS). Many of these cuts will require a lot of engineering and infrastructure to be realized.

Where are cuts hardest?

Heavy Industry

 Emissions in some processes are inevitable (e.g., calcifying cement). These will likely require capture, but commercial scale is still being reached.

Agriculture

 While some agricultural emissions can be addressed, others are too diffuse to abate at all. And the sector has little ability to absorb added costs.

RBC Economics What drives total decarbonization?

- At present, the only commercial fuel-switching option with the potential to cut end-use emissions to zero is electrification.
- In most cases, electrification also improves energy efficiency: EVs and heat pumps can be 3-4 times more efficient than their fossil fuel alternatives, cutting overall energy use
 - However, in most applications, they cost more because there are upfront costs to switching, and electricity is more expensive than natural gas.
 - In mobile applications, like EVs, we also need to store electricity, and batteries are expensive and heavy.
- Broadly, any place where electrons can replace molecules is one where full decarbonization is possible.

Why are some sectors so hard and expensive to abate?

There are some major barriers to electricity replacing fossil fuel:

- High heat applications
 - Commercially available heaters can't yet electrify all high-heat processes, like those in chemicals, cement, and steel
- Off-grid industry
 - Where load requirements are high (kW not kWh), industry must be gridconnected. In some sectors, like mining and natural gas, that isn't practical.
- Weight-sensitive applications
 - Batteries weigh too much to get a plane off the ground, and will challenge the economics of other sectors like freight transport and marine shipping

Economics Where electricity can't help, CCUS can

RBC

- Carbon capture systems are energy-intensive, complex to install, and expensive. That means, unlike electrification, they increase overall energy demand, reducing energy efficiency.
- They also can't solve the entire emissions problem: even the most reliable CCUS systems have residual emissions of 10-20%.
- But they can be deployed where electricity isn't an option, and where efficiency measures have been exhausted.
- They can also address process emissions from cement, steel, and chemicals.
- In our research, oil & gas and heavy industry are expected to rely heavily on CCUS unless other major breakthroughs come on things like hydrogen or new cement chemistries.

The Road Ahead

RBC Economics Keeping our options open...

Remaining emissions are concentrated, but hard

Emissions remaining after current technologies, Mt CO₂e

Source: RBC Economics

But acting quickly, if not decisively

- Acting now is a critical part of the equation for technology
- There is a well established relationship between adoption and cost-savings in energy tech.
- But this thinking must be risk managed

Source: Ziegler & Trancik, 2021

RBC Economics Green finance is concentrated globally

- ~\$850 Bn through October 2021 in green finance globally, up 4x from 2017 levels
- But only Europe is really spending what they need to, and issues a disproportionate share of sustainable finance

Few regions are making sufficient climate investments

Estimated annual clean investment required and 2020 flows, top 40 countries, US\$ billions

Source: Bloomberg, Our World in Data, RBC Economics, IEA | AE = Advanced economies, EM = Emerging economies

How to proceed? Think about more than just carbon pricing

- The theoretical elegance of the carbon pricing regime comes in part from its universal application
 - This is a critical, and incorrect, assumption in modern regimes
- It also lends itself nicely to MAC curve thinking: cutting emissions incrementally and cheaply. But faced with our 2050 ambition, perhaps we should aim at full decarbonization efforts more.
- To progress towards our near-term climate goals, then, we need both broader and higher carbon pricing, and acceleration on efforts in a few key sectors: buildings, passenger transport, and CCUS.

RBC Economics The Plan

- The report outlines 8 action items for policy makers:
 - A national policy on electrification to (at least) double generation
 - A national strategy on green skills to train the next generation of Canadian workers
 - Long-term commitment to carbon pricing to lay the groundwork for clean decisions
 - Leveraging climate to enhance U.S. trade to support domestic industry and supply chains.
 - An industrial strategy for CCUS to make projects easier and faster.
 - A national action plan for sustainable agriculture to help farmers store more carbon in our land
 - **Super-charging electric vehicles** to more quickly adopt the most viable electrification technology and develop the next generation of electric mobility
 - **Rapid retrofitting** to bring down energy waste

Non-fiscal policies can be equally important

- Changing behaviour is a critical component to addressing the ~183 Mt of residual emissions by 2050.
- How do we get consumers riding e-bikes instead of driving, eating alternative proteins, and adopting heat pumps?
 - Solving information problems is key
 - Financial innovation can help accelerate change
 - Focus on amenities to make the green option better

RBC Economics Questions to ask ourselves

- Electricity will new capacity added be non-emitting? How can we make it so?
- **Oil & Gas** do regulations reflect the different risk profile of CCUS projects vs. oil and gas development?
- **Buildings** do owners have enough information? Can we aggregate projects like we do with NHA MBS?
- Transportation early adopters tolerate inconvenience, but will the masses?
- Heavy industry as an export-focused economy, competitiveness is key. Are there easier policies than BCAs?
- **Agriculture** How can we rethink the ability of farmers to sequester? Can we find ways to generate cashflow rather than add debt?

RBC Economics Key Takeaways

- Getting to Net Zero will be challenging, but we think it's doable.
- Canada needs a plan as the whole world jockeys for position in the Net Zero economy, lest we get left behind.
- Working to spur uptake of clean technologies in industry, electric vehicles, and pivot to more sustainable practices across the economy is critical.
- Effort to spur action in some sectors, like electricity, buildings, and passenger transport, may yield the fastest near-term emissions cuts.
- But we must remember to coordinate with trading partners to help our traded sectors transition, to ensure we cut emissions deeply even in trickier sectors.
- If we get it right, Canada could be heading into a new age of innovation and economic growth.